3.137 \(\int \frac{\sqrt{a \sin (e+f x)}}{(b \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=141 \[ -\frac{a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)} \tan ^{-1}\left (\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}-\frac{a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)} \tanh ^{-1}\left (\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}+\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}} \]

[Out]

(2*Sqrt[a*Sin[e + f*x]])/(b*f*Sqrt[b*Tan[e + f*x]]) - (a*ArcTan[Sqrt[Cos[e + f*x]]]*Sqrt[Cos[e + f*x]]*Sqrt[b*
Tan[e + f*x]])/(b^2*f*Sqrt[a*Sin[e + f*x]]) - (a*ArcTanh[Sqrt[Cos[e + f*x]]]*Sqrt[Cos[e + f*x]]*Sqrt[b*Tan[e +
 f*x]])/(b^2*f*Sqrt[a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.143315, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {2595, 2601, 12, 2565, 329, 212, 206, 203} \[ -\frac{a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)} \tan ^{-1}\left (\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}-\frac{a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)} \tanh ^{-1}\left (\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}+\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*Sin[e + f*x]]/(b*Tan[e + f*x])^(3/2),x]

[Out]

(2*Sqrt[a*Sin[e + f*x]])/(b*f*Sqrt[b*Tan[e + f*x]]) - (a*ArcTan[Sqrt[Cos[e + f*x]]]*Sqrt[Cos[e + f*x]]*Sqrt[b*
Tan[e + f*x]])/(b^2*f*Sqrt[a*Sin[e + f*x]]) - (a*ArcTanh[Sqrt[Cos[e + f*x]]]*Sqrt[Cos[e + f*x]]*Sqrt[b*Tan[e +
 f*x]])/(b^2*f*Sqrt[a*Sin[e + f*x]])

Rule 2595

Int[Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]/((b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(2*Sqrt[a*Sin
[e + f*x]])/(b*f*Sqrt[b*Tan[e + f*x]]), x] + Dist[a^2/b^2, Int[Sqrt[b*Tan[e + f*x]]/(a*Sin[e + f*x])^(3/2), x]
, x] /; FreeQ[{a, b, e, f}, x]

Rule 2601

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(Cos[e + f*x
]^n*(b*Tan[e + f*x])^n)/(a*Sin[e + f*x])^n, Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, b
, e, f, m, n}, x] &&  !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(-1)]) || IntegersQ[m - 1/2, n -
1/2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2565

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a \sin (e+f x)}}{(b \tan (e+f x))^{3/2}} \, dx &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}+\frac{a^2 \int \frac{\sqrt{b \tan (e+f x)}}{(a \sin (e+f x))^{3/2}} \, dx}{b^2}\\ &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}+\frac{\left (a^2 \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \int \frac{\csc (e+f x)}{a \sqrt{\cos (e+f x)}} \, dx}{b^2 \sqrt{a \sin (e+f x)}}\\ &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}+\frac{\left (a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \int \frac{\csc (e+f x)}{\sqrt{\cos (e+f x)}} \, dx}{b^2 \sqrt{a \sin (e+f x)}}\\ &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}-\frac{\left (a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (1-x^2\right )} \, dx,x,\cos (e+f x)\right )}{b^2 f \sqrt{a \sin (e+f x)}}\\ &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}-\frac{\left (2 a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-x^4} \, dx,x,\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}\\ &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}-\frac{\left (a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}-\frac{\left (a \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sqrt{\cos (e+f x)}\right )}{b^2 f \sqrt{a \sin (e+f x)}}\\ &=\frac{2 \sqrt{a \sin (e+f x)}}{b f \sqrt{b \tan (e+f x)}}-\frac{a \tan ^{-1}\left (\sqrt{\cos (e+f x)}\right ) \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}}{b^2 f \sqrt{a \sin (e+f x)}}-\frac{a \tanh ^{-1}\left (\sqrt{\cos (e+f x)}\right ) \sqrt{\cos (e+f x)} \sqrt{b \tan (e+f x)}}{b^2 f \sqrt{a \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.326026, size = 88, normalized size = 0.62 \[ \frac{\sqrt{a \sin (e+f x)} \left (2 \sqrt [4]{\cos ^2(e+f x)}-\tan ^{-1}\left (\sqrt [4]{\cos ^2(e+f x)}\right )-\tanh ^{-1}\left (\sqrt [4]{\cos ^2(e+f x)}\right )\right )}{b f \sqrt [4]{\cos ^2(e+f x)} \sqrt{b \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*Sin[e + f*x]]/(b*Tan[e + f*x])^(3/2),x]

[Out]

((-ArcTan[(Cos[e + f*x]^2)^(1/4)] - ArcTanh[(Cos[e + f*x]^2)^(1/4)] + 2*(Cos[e + f*x]^2)^(1/4))*Sqrt[a*Sin[e +
 f*x]])/(b*f*(Cos[e + f*x]^2)^(1/4)*Sqrt[b*Tan[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.151, size = 237, normalized size = 1.7 \begin{align*} -{\frac{\cos \left ( fx+e \right ) -1}{2\,f\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) } \left ( 4\,\cos \left ( fx+e \right ) \sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}-\ln \left ( -{\frac{1}{ \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \left ( 2\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}} \left ( \cos \left ( fx+e \right ) \right ) ^{2}- \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}+2\,\cos \left ( fx+e \right ) -1 \right ) } \right ) +\arctan \left ({\frac{1}{2}{\frac{1}{\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}}}} \right ) +4\,\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}} \right ) \sqrt{a\sin \left ( fx+e \right ) } \left ({\frac{b\sin \left ( fx+e \right ) }{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{-{\frac{\cos \left ( fx+e \right ) }{ \left ( \cos \left ( fx+e \right ) +1 \right ) ^{2}}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x)

[Out]

-1/2/f*(cos(f*x+e)-1)*(4*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-ln(-(2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)
^(1/2)*cos(f*x+e)^2-cos(f*x+e)^2-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)+2*cos(f*x+e)-1)/sin(f*x+e)^2)+arctan(1
/2/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))+4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))*(a*sin(f*x+e))^(1/2)/(b*sin(f
*x+e)/cos(f*x+e))^(3/2)/sin(f*x+e)/cos(f*x+e)/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right )}}{\left (b \tan \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e))/(b*tan(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 3.89498, size = 1351, normalized size = 9.58 \begin{align*} \left [\frac{2 \, b \sqrt{-\frac{a}{b}} \arctan \left (\frac{2 \, \sqrt{a \sin \left (f x + e\right )} \sqrt{\frac{b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt{-\frac{a}{b}} \cos \left (f x + e\right )}{{\left (a \cos \left (f x + e\right ) + a\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + b \sqrt{-\frac{a}{b}} \log \left (-\frac{a \cos \left (f x + e\right )^{3} + 4 \, \sqrt{a \sin \left (f x + e\right )} \sqrt{\frac{b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt{-\frac{a}{b}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 5 \, a \cos \left (f x + e\right )^{2} - 5 \, a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )^{3} + 3 \, \cos \left (f x + e\right )^{2} + 3 \, \cos \left (f x + e\right ) + 1}\right ) \sin \left (f x + e\right ) + 8 \, \sqrt{a \sin \left (f x + e\right )} \sqrt{\frac{b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{4 \, b^{2} f \sin \left (f x + e\right )}, \frac{2 \, b \sqrt{\frac{a}{b}} \arctan \left (\frac{2 \, \sqrt{a \sin \left (f x + e\right )} \sqrt{\frac{b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt{\frac{a}{b}} \cos \left (f x + e\right )}{{\left (a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + b \sqrt{\frac{a}{b}} \log \left (\frac{4 \,{\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt{a \sin \left (f x + e\right )} \sqrt{\frac{b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \sqrt{\frac{a}{b}} -{\left (a \cos \left (f x + e\right )^{2} + 6 \, a \cos \left (f x + e\right ) + a\right )} \sin \left (f x + e\right )}{{\left (\cos \left (f x + e\right )^{2} - 2 \, \cos \left (f x + e\right ) + 1\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + 8 \, \sqrt{a \sin \left (f x + e\right )} \sqrt{\frac{b \sin \left (f x + e\right )}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{4 \, b^{2} f \sin \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(2*b*sqrt(-a/b)*arctan(2*sqrt(a*sin(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(-a/b)*cos(f*x + e)/(
(a*cos(f*x + e) + a)*sin(f*x + e)))*sin(f*x + e) + b*sqrt(-a/b)*log(-(a*cos(f*x + e)^3 + 4*sqrt(a*sin(f*x + e)
)*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(-a/b)*cos(f*x + e)*sin(f*x + e) - 5*a*cos(f*x + e)^2 - 5*a*cos(f*x +
e) + a)/(cos(f*x + e)^3 + 3*cos(f*x + e)^2 + 3*cos(f*x + e) + 1))*sin(f*x + e) + 8*sqrt(a*sin(f*x + e))*sqrt(b
*sin(f*x + e)/cos(f*x + e))*cos(f*x + e))/(b^2*f*sin(f*x + e)), 1/4*(2*b*sqrt(a/b)*arctan(2*sqrt(a*sin(f*x + e
))*sqrt(b*sin(f*x + e)/cos(f*x + e))*sqrt(a/b)*cos(f*x + e)/((a*cos(f*x + e) - a)*sin(f*x + e)))*sin(f*x + e)
+ b*sqrt(a/b)*log((4*(cos(f*x + e)^2 + cos(f*x + e))*sqrt(a*sin(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*sq
rt(a/b) - (a*cos(f*x + e)^2 + 6*a*cos(f*x + e) + a)*sin(f*x + e))/((cos(f*x + e)^2 - 2*cos(f*x + e) + 1)*sin(f
*x + e)))*sin(f*x + e) + 8*sqrt(a*sin(f*x + e))*sqrt(b*sin(f*x + e)/cos(f*x + e))*cos(f*x + e))/(b^2*f*sin(f*x
 + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))**(1/2)/(b*tan(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right )}}{\left (b \tan \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*sin(f*x+e))^(1/2)/(b*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(f*x + e))/(b*tan(f*x + e))^(3/2), x)